C:\IDE\Brooke-16F88-LED\Brooke-16F88_LED.asm

title "Simple 16F88 LED Blinker"
; by Brooke Clarke, N6GCE

; Working 5 June 2006

; http://www.PRC68.com

; How to Read the .asm Source File
; This file Brooke-16F88-LED.asm was prepared using the MPLAB Editor.

; Since it"s the assembler source file it has the .asm file type.

; any text after the semicolon ;" is a comment and will show up green.
; Assembler directives and PIC commands are blue.

; Labels are Violet.

; There are also colors for the different number formats.

; My comments to the listing are inside the equal signs "="
; the other comments are part of the assembly file

; Line labels must be left justified.

; commands need to be spaced or tabbed in from the left margin.

; If a command is on the left margin it will be colored violet

; and interperted as a label. Once a space or tab is inserted the

; color will change to blue.

; The assembler is smart and can catch some label or command confusion
; and generate a warning.

; There is no spelling checker so the comments and commands might be wrong.
; The assembler will complain about misspelled commands, but does not
; look at the comments.

; 1T you"re reading this in the MPLAB editor on the left of the page

; there will be a gray gutter with assembly line numbers. These line

; numbers are printed in the assembly listing just to the left of the

; memory address. The line numbers at the very left of a listing

; are the listing line numbers and are NOT the source code line numbers.

; Using the pdf Version
; An advantage of the pdf version is that it has the colors, that's

; not the case if Word is used. Neither Word nor Acrobat captures the
; assembly line numbers that you see on the left in the MPLAB Editor.

; The pdf file can be used to cut and paste text. To do this use the
; Adobe '"text tool" to select the text and <CTRL><C> to copy it to

; the clipboard. Then position the cursor in the MPLAB editor window
; where you want the clipboard contents and press <CTRL><p>.

N Hardware Notes -----

; /MCLR pin 4 thru 10 k resistor to +5 Volts

; Vss pin 5 to ground

; Vdd pin 14 to +5

; LEDs can be connected to one or more of the 15 the unused pins.
; Each LED should be connected to ground using a

; resistor (say 220 to 470 Ohms). LED flat towards ground.

; A large electrolytic cap 10 to 50 uF at >= 16 V across +5 to gnd.
; A 0.1 or 0.01 uF ceramic across +5 to gnd.

; A 1N400x diode across +5 to gnd with the cathode (band) to +5.

; This diode does nothing normally, but if you hook up the power

; supply backwards the diode will protect the PIC.

; Optional, but handy a resistor (say 220 to 470 Ohms) between
; +5 and LED. LED flat to gnd. This is the Power ON indicator.

; Approximate outputs

; AO pin 17 = 5363 Hz = 190 us
; Al pin 18 = 2632 Hz = 380 us
; A2 pin 1 = 1316 Hz = 760 us
; AB pin 2 = 658 Hz = 1.52 ms
; AA pin 3 = 333 Hz = 3 ms

; A5 pin 4 = /MCLR no output

; A6 pin 15 = 83 Hz = 12 ms

; A7 pin 16 41 Hz = 24 ms



C:\IDE\Brooke-16F88-LED\Brooke-16F88_LED.asm

; BO pi 6 = 20 Hz = 48 ms

; Bl pin 7 = 10 Hz = 100 ms

; B2 pin 8 = 5 Hz = 200 ms

; B3 pin 9 = 2.5 Hz = 400 ms

; B4 pin 10 = 1.2 Hz = 800 ms

; B5 pin 11 = 0.6 Hz = 1.6 sec

; B6 pin 12 = 0.3 Hz = 3.2 sec

; B7 pin 13 = 0.1 Hz = 6.4 sec

; Building a Project in MPLAB
; (0) Help \ Topics \ MPASM Assembler has much more detail than this
; summary.

; (1) download and install the latest version of MPLAB. Note that sometimes
; Microchip releases a version that"s in beta test. If two versions are

; offered and one is the beta do NOT use the beta version unless you

; are having proplems you that might be fixed in the beta.

http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&node ld=1406&dDocName=en019469&part=SW0
07002

; (2) Using Windows file manager "Explorer™ (not Internet Explorer)

; create a directory called IDE directly under C: like C:/IDE.

; In the IDE directory place a sub directory with a short name for each project.
; This is done because there"s a MPLAB limitation on the total path length

; of some file names.

(3) Configure \ Select Device and using the drop down box select

; the device family. For the 16F88 it"s the mid range family.

; Then using the device drop down list of PIC model numbers, select

; the correct PIC. |If you don"t see the PIC model number you"re

; looking for be sure the family is set properly since family changes

; list of PICs. Once this is done the Select Device window shows you

; which programmers, languages and debuggers can be used with that PIC.
; Note that the PIC Kit 1 is supported in MPLAB.

; Also note that this should be done first when starting something new.
; many of the other MPLAM modules use the PIC model number to know how
; to handle the meaning of the code.

; A number of years ago someone offered a ''Cheap PIC" programmer on the

; Internet. These have reproduced faster than rabbits and now we have

; the great-great-great ...- great grandson of Cheap PIC programmer.

; 1 suppose that if you want to save every penny possible you could use

; one of these but it"s not anywhere as fast and easy as using a

; programmer that®"s integrated into the Integraged Development Enviornemnt (IDE).

;(4) 1 like using the source file for setting the configuration
; byte, but you can also use Configure \ Configuratin bits to do this.
; It does not hurt to use both, the the assembler directive rules.

;(5) Place the .asm file if you have one, into the project folder.
; 1T you don"t have one it may be easier to use the .asm file from a
; prior project than it is to start from scratch.

;(6) Click on Project \ New. A dialog box will open enter text
; describing the project in the top line and use the browse button
; to point to the project folder under IDE, like C:/IDE/Projl.

(6a) IT you have a .asm file then in the Project window right click

; on "Source File" and select "add file" then be careful that the

; displayed folder is the correct project (MPLAB has a sticky problem

; and tends to point to the prior project folder here making for mistakes)

; double click the correct .asm file. It should appear under ''source

; Files”. Then double click on the projl.asm file to open the editor window.

;(6b)IT you don"t have a source file then click on File \New and the
; editor will open a window. This file needs to be saved into the project
; folder with a .asm file type.



C:\IDE\Brooke-16F88-LED\Brooke-16F88 LED.

(7) When you are ready to try click on "Build AIl". This will start
; the assembly process and will generate a bunch of files in the

; project folder. It also may open the Output folder with the "Build
; tab active. It"s here that you fine out if there are Warning or

; Error messages. This is a very valuable file for debugging and for
; thay use it neeeds to be read very carfully.

;(8) IT the build is sucessful then you might want to "Save Project",
; but if there are errors you may not want to save the project.

(9) IT you are using one of the Microchip programming tools then you
; can get it going by selecting: Programmer \ Select Programmer \ .

; Then connecting or enabling the programmer. Once this is done it

; remains with the project. So it"s very easy once you have a good

; build to click on "earse" the 'program"™ to get the code into the

; PIC. Pay attention to the lower bar of MPLAB during the programming
; operation and make sure the green progress dots are moving and the
; address is incrementing. When done the last line in the Output

; window should be something about a sucessfull build. Be sure to

asm

; check for this becasue if there was a problem it"s easy to fix here.

; Some problems are the Picstart Plus has the power plug pull out or
; you forgot to close the ZIF socker, or you put the PIC in the wrong
; ZIF socket holes, or you put the PIC in backwards, or you put a TTL
; chip in the ZIF socket instead of the PIC. MPLAB is not

; very smart here so check for the above if you are having problems.

;(10) If using ICD 2 thre are two ways of using it.

(A) for programming only. In this case you open IDC2 as the program
; using Programmer \ Select Programmer then connect. After a good

; build use Programmer erase part then programmer program.

; (B) If using ICD 2 for debug and programming leave Programmer with

; no selection and instead activate Debugger \ Select Tool \ ICD2.

; A window may pop up saying "Invalid Target Device' meaning that it
; does not see the model number PIC that"s been selected in

; Configure \ Select Device. Note that when working with PICs that

; directly support ICD2 (like the 16F88) you can Debugger\Clear Memor
; All Memory and also Debugger\Program the part. Remember that

; programming a part from the Debugger window adds some code for the

; debugging process and when you are done debugging to shut down the

; Debugger and open the Programmer to load a clean version of the

; code into the PIC.

; LIST
; The "LIST" below is what"s called an assembler directive. It tells
; but does not generate any code. For help click on Help\Topics\MPAS
;  In the Help window on the left click on Search and type in LIST <e
; You can move the divider left or right to allow seeing all of the t
; Click on "Directives by Alphabetical Listing"” for a list of the dir
; click on "list - Listing Options"™. The p=<processor> directive is

; n=<# of lines on printed page> and c=<number of columns on printed

LIST P=16F88, n=.61, c=.78
;Wordpad margins T.5, L.75, R.5, B.5 <- a reminder for me

; ERRORLEVEL

; The errorlevel directive allows controlling what warnings, errors,
; by far the most common warning is 302:

; " Register in operand not in bank 0. Ensure that bank bits are cor
; 1 have commented out this directive below so that when you run "Bu
for 302 and 305.

; Then you can remove the '";" and rerun "Build All" and see a cleane
; But don"t just invoke the errorlevel directive just to get rid of t
sure

; that you have properly set the bank select STATUS bits.

;errorlevel 0,-302, -305

; #INCLUDE

mer

v\

the assembler what to do

M Assembler then click OK.
nter>.

opics under “List".

ectives and then on the right
used below as well as the

page.

etc. are shown by the assembler.

rect."
ild AII" you will see warnings

r listing.
he warnings unless you know for



C:\IDE\Brooke-16F88-LED\Brooke-16F88_LED.asm

; The #INCLUDE directive is highly recomended. It defines all the commonly used bytes and bits for
the

; PIC being used which both saves a lot of work, but also uses standardized names making the assembly
; listing much easier to read. Not all of the include file names match the PIC model number.

; Some have an "x" to allow the file to work for a family of PICs. To find the include file for your
; PIC look in: C \ Program Files \ Microchip \ MPASM Suite.

; Be very careful that you write down the exact file name.

#INCLUDE "'pl6F88.inc"

: __CONGIG
; Note this is Underline Underline then CONFIG, you must use the 2 underlines

; This directive controls the configuration bits that get set at code burn time
; and these can not be changed later by the PIC.

; It"s possible to set them using MPLAB Configure \ Configuration Bits, but this opens
; the door for a mistake where the code is written for one configuration and the

; PIC gets burned with a different configuration.

; 1 try to always set them in the code as below.

; The 16F88 uses a special format of the _ CONFIG directive that"s used where there are two or more
; configuration words. The 16F88 manual forgot to mention this but you can find it

; In the Help \ MPASM | search "__CONFIG" and look at the 18F examples.

; Note that unlike the very common mid range config that looks like _ CONFIG _paraml & _param2 &

; This starts off _ CONFIG _CONFIG1l, _paraml & _param2 & ....
N

; Note calling out Underscore then CONFIG1 and the commal

; The separator between each parameter is the "&" (AND) operator.

; Each of these parameters translates into a word (16 bits) where all the not used bits are 1.
; This allows ANDing them together to get the proper configuration word.

; Once you have used "Build AIl" then a listing file will be in the project folder.

; To add it to the project click on either File \ Open or the "open File" lcon.

; Next at the bottom of the Open window select Files of type 'List Files (.Ist).

; Typically there will only be one file, just double click it.

; Now scroll down to almost the bottom of the listing file and you will see all the _parameter

; names for whatever PIC you are using. Then you can cut and paste them into the _ CONFIG
directive.

; The data sheet for each PIC goes into detail on what each of these does and what options you have.
; For this you must Read The F----- g Manual (RTFM).

; My comments below were prompted because | was using the Picstart Plus which allows _MCLR_OFF.

; But the ICD 2 requires _MCLR_ON.

;o ——— Note _CONFIG1l is at 2007 and can only be set at burn time----—-————————-

; for use with ICD2 MCLR needs a 10k pull up resistor and MCLR_ON in the config word.

; Once everything has been tested (except any RA5 functions) the internal MCLR_OFF configuration

; can be used. Note that RA5 pin can only be used for an input so the 10k resistor can be left

; there and a switch added. maybe using the RC filter debounce ckt.

__CONFIG _CONFIG1, _CPD_OFF & _CP_OFF & _DEBUG_OFF & _LVP_OFF & _MCLR_ON & _PWRTE_ON & _WDT_OFF &
_WRT_PROTECT_OFF & _INTRC_I0 & _BODEN_OFF

; CBLOCK
; Common Blocks can be used a number of ways. The simplest is as shown below where the "0x20" is the
; address of the first available user RAM for the PIC you are using.

;You need to RTFM to find out what that address is! In the case of the 16F88 it"s 0x20 (i.e. hex
20).

; Each file name gets assigned to the next available RAM address. So in this case Bshadow is
assigned to O0x22.

; you can see these assignments by looking at the bottom of the listing in alphabetical order.

; Register Usage

CBLOCK 0x20 ; Start Registers at End of the Values
di ; Delay counters
Ashadow



C:\IDE\Brooke-16F88-LED\Brooke-16F88_LED.asm

Bshadow
ENDC

; ORG

; All the above have been assembler directives that do not generate any code. Now we"re getting to
where
; code will be generated.

; The origin command tells the assembler what line number to use. There must be at least one of
these

; at the beginning of every program. There can be more than one, like below.

; At power up most (maybe all) PICs start executing whatever code is at address O.

; Some micro processors use other memory addresses to find the cold start address.

; Most PICs that have interrupt capability use address 4 as the start of the Interrupt Service
Routine (ISR).

; For this simple program in either case the program will start at the "Start" label.

; PAGE
; This program is maybe 1 page long if all these extra comments were

; removed, but the "page"™ directive is so important that I want to

; mention it here. Maybe 40 years ago | used the equivalent directive

; so that when a program was printed out each subroutine would be on

; a seperate piece of paper. Many many years later Microsoft has this

; concept in either "Code Complete' or "How to write Solid Code". I can"t
; over emphasize how important this is. This also means that the length
; of any subroutine can not be longer than what can be printed on one

; page. |If it"s longer then you need to figure out a logical way

; to break it up. This also goes for the main program, it too needs

; to fit on one piece of paper. Again if it does not fit, then it needs
; to be broken up into logical parts, not use a pagel page2 thing.

; The reasoning behind this gets into the span of control and other

; stuff that®"s not part of this getting started paper.

; In a program that takes many pages to print I spend some time on getting
; the page directives as outlined above and then working to refine the
; routines so they fit pages properly.

; When taking a photo most people look to see what®s in the photo. A
; more expreiences photographer then looks to see what should not be
; In the photo. By controlling the page breaks you are controlling

; what you see and what you do not see and this is a very big aid

; when you are debugging code.

; Although there are those at Microchip that understand the importance

; of the page directive the others who are short sighted have allowed

; a bug to remain in MPLAB since about version 4.0. The bug is that

; when vyou print from MPLAB the new page commands put into the files are
; ignored. In order to get the proper new page fomratting you need to

; use Word Pad or Word to open and print the listing file.

PAGE
; Start of Code
org 0
goto Start
org 4
Start
; Housekeeping

; The first thing that needs to be done is housekeeping.

; This is where the function of each PIN is defined and where the initial values are set.

; 1 happen to know that STATUS, PORTA and PORTB are all in memory bank O for the 16F88,

; but you need to RTFM section on "Memory Organization' to be sure in which bank which register is
located.

; This is the subject relating to the 302 warrnings. Note that there"s a neat assembler directive
"banksel".

; It can be used after the PIC model number is defined above and sets the STATUS register bits RPO,
RP1, etc.

; for you. 1 think if you"re using banksel in front of every register and port operation then all

5



C:\IDE\Brooke-16F88-LED\Brooke-16F88_LED.asm

the 302 type
; problems should go away.

; Enable all of A & B for Output
clrf STATUS ; this also sets bank 0O
clrf PORTA
clrf PORTB
; Input & Output memory Aid
; 1 (one) for Input - note that 1 and i look very much alike.
; 0 (zero) for Output - note that 0 and O look very much alike.
; But be sure to use numbers for setting the port pin directions.

;========= TRIS command vs. TRISA, TRISB, etc register names ======
; First generation PICs used a command TRIS (tristate) that assigned
; the direction of the port pins. More modern PICs have registers

; called TRISA, TRISB, etc. and the preferred method is to write to
; those registers to control port direction.

moviw  0x000

banksel TRISA

movwf TRISA

banksel TRISB

movwf TRISB
; Ports with possible A/D inputs
; at this point a newbie would think that they had setup port A for
; all outputs, but when the program is run there will be NO outputs
; on port A. When a port contains the possibility of Analog to Digital
; converters those pins are defaulted to analog inputs. This is the safe
; thing to do to prevent damage. In the 16F88 port A has the analog inputs
; and so the Analog Select register needs to be programmed to make whatever
; port A bits we want to be Digital 1/0 pins. In this case we want all the
; pins on port A to be digital so using the memory aid above (Oh or zero for
; Output) we just clear the ANSEL register.

banksel ANSEL
clrf ANSEL

; OSCCON
; One of the features of the 16F88 that"s not on the 16F84 is the
; internal oscillator. No pins need be wasted for Fosc.

banksel OSCCON
; mmm————— The Internal RC Frequency can be set at any time after ORG --—-—---—-———————————————
; Now set 4 MHz clock

bsf OSCCON, IRCF2 ; 110 is 4 MHz

bst OSCCON, IRCF1

bcf OSCCON, IRCFO

; ============ the 16F88 has a clock fail safe system that"s not used here =

bcf OSCCON,SCSO ; 00 is Oscillator mode defined by FOSC <2:0>

bcf OSCCON,SCS1 ;
nop ; allow some time for oscillator to settle
nop

; OSCCAL

; many of the PIC chips come with an oscillator calibration value that"s

; specific for each chip and by reading that value and storing it into

; the OSCCAL register the internal clock is more accurate than not using

; 1t. But the 16F88 does not use that method and instead had OSCTUNE to

; tweak the internal oscillator frequency. For most apps you can just

; forget about this. |It"s here leftover from another project.

banksel OSCTUNE

bsf OSCTUNE, TUN5

bcf OSCTUNE, TUN4

bsf OSCTUNE,TUN3

bsf OSCTUNE, TUN2

banksel PORTA
; Main Loop
; there are a number of ways a program can be constructed.

6




C:\IDE\Brooke-16F88-LED\Brooke-16F88_LED.asm

; This program has the Housekeeping above then the Loop below.

; below the loop are the subroutines.

; There are some other possible constructs. For example:

; * Instead of having the loop enclose code the program might end in
; a loop pointing to itself.

; * there may not be any housekeeping just the loop.

; * there may be interrupts added to any of the above.

; etc. etc.

; Commands
; One of the selling points of the PICs is that they only have

; 30 something commands, not the huge number of commands that a

; Complex Instruction Set Computer (CISC) would have. This is called

; a Reduced Instruction Set Computer (RISC). RISC computers tend to

; run faster than CISC computers. The RISC instruction set is much

; easier to keep in mind (one side of one sheet of paper) than the

; book needed for a CISC instruction set computer.

; RTFM section "Instruction set Summary' to learn what the commands do.

Loop
call Delay80us
incfsz Ashadow
goto UpdateA
goto UpdateAB

UpdateA
movFf Ashadow,W
movwf PORTA
goto Loop

UpdateAB
movf Ashadow,W
movwT PORTA
INCF Bshadow
movf Bshadow,W
movwT PORTB
goto Loop

; End of the Main Loop ===========
; below here are subroutines. They have a label
; and end with "return” or "retlw".

; On line PIC delay code generator
; http://www._piclist.com/techref/piclist/codegen/delay.htm
; variable d1 moved up into top cblock

Delay80us
;76 cycles
moviw 0x19
movwf dl
Delay80us_0
decfsz di, f
goto Delay80us_0O

;4 cycles (including call)
return
; END
; the last assembler directive which must be at the end of the program
; is the END statement.

end



	How to Read the .asm Source File
	Using the pdf Version
	    Hardware Notes
	Building a Project in MPLAB
	1. Install MPLAB
	2. Create C:\IDE directory
	3. Configure - Select Device
	4. Configuration Bits
	5. .asm File into Proj Folder
	6. Create Project
	6a. Attach .asm File to Project
	6b. Write .asm file & Attach

	7. Build All
	8. Save Project
	9. Setup Programmer
	10a. ICD 2 as Programmer
	10b. ICD 2 as Prog & Debugger

	LIST
	ERRORLEVEL
	#INCLUDE
	__CONFIG
	CBLOCK - ENDC
	ORG
	PAGE
	Housekeeping
	Input & Output Memory Aid
	TRIS, TRISA, TRISB, etc.
	Analog Ports & ANSEL
	OSCCON
	OSCCAL
	Commands
	    Loop
	Subrouties
	END

